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Abstract

This paper presents two new methods for discretizing a Dirac delta function which is concentrated on the zero level set
of a smooth function u: Rn

´ R. The function u is only known at the discrete set of points belonging to a regular mesh
covering Rn. These two methods are used to approximate integrals over the manifold defined by the level set. Both methods
are conceptually simple and easy to implement. We present the results of numerical experiments indicating that as the mesh
size h goes to zero, the rate of convergence is at least O(h) for the first method, and O(h2) for the second method. We per-
form a limited analysis of the proposed algorithms, including a proof of convergence for both methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the problem of approximating an integral of the form
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UR
I :¼
Z

C
f ð~xÞds; ð1Þ
where~x ¼ ðx1; . . . ; xnÞ 2 Rn, f: Rn
´ R, and C is a manifold of codimension one defined by the zero level set of

a function u: Rn
´ R. When the function u is only defined at the discrete set of mesh points of a regular grid, it

is impractical to define the manifold parametrically. In this situation, it is common practice [3] to replace the
integral above by an integral of the form
Z

Rn
f ð~xÞdðuð~xÞÞkruð~xÞkd~x; ð2Þ
where d(Æ) denotes the Dirac delta function. (See [12] for a proof that the two integrals are equal.) One then
approximates the integral (2) using the available grid-defined quantities. Clearly this requires some sort
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of discretization of the quantity dðuð~xÞÞ. This paper proposes two new methods for accomplishing this
discretization.

The problem described in the previous paragraph arises naturally in the level set method, which is a very
effective technique for computing the evolution of interfaces, originally devised by Osher and Sethian [4]. In a
level set application, the interface would be the manifold C of the previous paragraph, defined implicitly as the
zero level set of the function u. Defining C implicitly in this way has the important advantage that it is unnec-
essary to track the interface as a distinct entity. The level set function u is evolved with time in accordance with
the geometry or physics of the application, generally by numerically solving a partial differential equation on a
regular mesh. In the process, the zero level set C (the interface) is automatically evolved in the desired manner.
This approach easily captures topology changes that would be difficult to handle by attempting to track the
interface in isolation. The problem of volume-preserving mean curvature motion provides a simple example of
how integrals of the form (1) are encountered in this setting [5]. For this flow, the level function u evolves
according to
ou=ot ¼ ðj� �jÞkruk; ð3Þ
where j = $ Æ ($u/i$ui) is the mean curvature and �j is the average mean curvature, defined by
�j ¼
Z

C
jds

�Z
C

ds: ð4Þ
Let f~xk ¼ ðx1
k1
; . . . xn

kn
Þ : k :¼ ðk1; . . . ; knÞ 2 Zng denote the set of mesh points of the regular grid. For sim-

plicity of notation, we assume that the mesh spacing h is the same in all directions, xi
ki
¼ kih, ki 2 Z. If

vk ¼ vð~xkÞ is a function defined at each meshpoint~xk, we define the discrete gradient operator $h via
rhvk ¼
Xn

m¼1

vð~xk þ h~emÞ � vð~xk � h~emÞ
2h

� �
~em; ð5Þ
where f~e1; . . . ;~eng is the standard basis for Rn. Similarly, we define the discrete Laplacian Dh by
Dhvk ¼
Xn

m¼1

vð~xk þ h~emÞ � 2vð~xkÞ þ vð~xk � h~emÞ
h2

: ð6Þ
We approximate the integral I appearing in (1) using
Ih :¼ hn
X
k2S

f ð~xkÞdhð~xk; uÞkrhukk; ð7Þ
where dhð~xk; uÞ is a discretized version of the delta function dðuð~xkÞÞ, and S is a subset of Zn containing those
indices k where f ð~xkÞdhð~xk; uÞ 6¼ 0. We propose two methods for computing dhð~xk; uÞ.

To explain the first method, we start from the formal relationship
rHðuð~xÞÞ ¼ H 0ðuð~xÞÞruð~xÞ: ð8Þ
Here H denotes the Heaviside function,
HðzÞ ¼
0; z < 0;

1; z > 0:

�
ð9Þ
Taking the inner product in (8) with ruð~xÞ gives
rHðuð~xÞÞ � ruð~xÞ ¼ H 0ðuð~xÞÞkruð~xÞk2
: ð10Þ
Solving for H 0ðuð~xÞÞ, and recalling that H 0(Æ) = d(Æ) yields the following formula:
dðuð~xÞÞ ¼ rHðuð~xÞÞ � ruð~xÞ
kruð~xÞk2

: ð11Þ
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We then discretize (11) to obtain

Method 1
dh
1ð~xk; uÞ :¼ r

hH hðukÞ � rhuk

rhuk

�� ��2
: ð12Þ
Here uk ¼ uk1;...;kn ¼ uðx1
k1
; . . . ; xn

kn
Þ, and Hh is a possibly regularized version of the Heaviside function, with the

smoothing parameter (appearing as a superscript) dependent upon the mesh size h. Our basic assumption con-
cerning Hh is

Assumption 1. Hh(z) is bounded uniformly for h P 0, and for some a P 0,
HhðzÞ ¼ HðzÞ for jzj > ah: ð13Þ

Method 1 is generally first order accurate, whether we use H itself or a regularized version Hh. However, with a
certain amount of regularization, this method sometimes performs very well – it appears to converge like O(h2)
on some of the numerical examples appearing in Section 5.

With the same type of approach used to derive (11), it is possible to derive yet another formal representa-
tion of d(u). This time, we start with IðzÞ ¼

R z
0

HðfÞdf, and the relationship
rIðuÞ ¼ HðuÞru: ð14Þ

We are suppressing for now the dependence on the spatial variable~x. Next we apply the operator $Æ to both
sides of this relationship, which yields
DIðuÞ ¼ HðuÞDuþ dðuÞkruk2
: ð15Þ
Solving for d(u) in (15) gives our second formal relationship for a delta function
dðuÞ ¼ DIðuÞ � HðuÞDu

kruk2
; HðuÞ ¼ rIðuÞ � ru

kruk2
: ð16Þ
To get the second of these relationships, we have solved (14) for H(u) in the same way that we solved (8) for d(u).
Combining both equations in (16), and then discretizing yields

Method 2
dh
2ð~xk; uÞ :¼ DhIðukÞ

krhukk2
� ðr

hIðukÞ � rhukÞDhuk

krhukk4
: ð17Þ
In contrast to Method 1, where we use a smoothed Heaviside function Hh to improve accuracy, we are not
proposing any parameter dependent regularization for the function I used in Method 2. In certain simplified
cases analyzed in Sections 3 and 4, we are able to prove that using Method 2, Ih ! I at a rate of O(h2). Our
numerical experiments seem to indicate that if u and f are sufficiently smooth, this second order rate of con-
vergence holds in general.

One technical detail that deserves comment at this point is that the formulas (12) and (17) are undefined if
krhuð~xkÞk ¼ 0. We will always assume that kruð~xÞk is bounded away from zero for~x near C. It follows that
both dh

1ð~xk; uÞ and dh
2ð~xk; uÞ are zero if~xk is more than an O(h) distance from C, and so the vanishing denom-

inators are harmless. To be more precise, we can simply define dh
i ð~xk; uÞ ¼ 0 if krhuð~xkÞk ¼ 0. This logic is con-

sistent with our computer implementations, which include a check like this to avoid division by zero.
As mentioned above, although Method 1 converges to the correct solution if we simply use the Heaviside

function H without any smoothing, we find that better results are obtained with a certain amount of regular-
ization. In a number of the numerical examples appearing in Section 5 we use Hh = HC,�, where
H C;�ðzÞ ¼
0; z < �;
1
2
þ z

2�
þ 1

2p sin pz
�

� �
; �� 6 z 6 �;

1; � < z:

8><
>: ð18Þ
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and � = 1.5h. The C appearing in the superscript refers to the fact that HC,�(z) is the approximate Heaviside
function associated with the cosine approximation to the delta function:
dC;�ðzÞ ¼
1
2�

1þ cos pz
�

� �� �
; jzj < �;

0; jzjP �:

�
ð19Þ
We also use the approximate Heaviside function Hh = HL,� defined by
HL;�ðzÞ ¼
0; z 6 �;

1
2
þ 1

�
z� signðzÞz2

2�

	 

; jzj < �;

1; z P �;

8><
>: ð20Þ
and � = 1.0h. The approximate Heaviside function HL,� is associated with the linear hat approximate delta
function:
dL;�ðzÞ ¼
1
�

1� z
�

�� ��� �
; jzj < �;

0; jzjP �:

(
ð21Þ
A possible concern is the so-called bandwidth (the number of meshpoints surrounding the level set where we
require that u be defined) of our proposed algorithms. Assume for the present discussion that the level set
function u is a signed distance function. This means that uð~xÞ represents the distance from the point ~x to
the closest point on the manifold C, modulo a plus or minus sign, which can be used to determine which side
(i.e., inside or outside) of the manifold C the point~x is on. There are a number of advantages to having u be a
signed distance function [3]. Moreover, in many implementations of the level set method, the functions f and u

are only defined at a small number of meshpoints surrounding the level set u = 0 [3,7]. In order to be of prac-
tical value, our algorithm should not require that u be defined for points very far from C. In fact, for Method
1, if Assumption 1 holds, a bandwidth of Ø2aø + 2 meshpoints is required. In our numerical examples, we use
either a = 1.5 (when using HC,�) implying a bandwidth of five meshpoints, or a = 1.0 (when using HL,�), imply-
ing a bandwidth of four meshpoints. By way of comparison, if one were to use a smoothed delta function with
support of [�1.5h, 1.5h] in a pointwise manner, a bandwidth of only three meshpoints would be required. In
the case where u is not a distance function, it is not possible to give a precise description of the bandwidth for
Method 1 without specifying more about u and its partial derivatives. For Method 2, the bandwidth is four
mesh points, whether or not u is a signed distance function.

The methods presented in this paper do not require that u be a distance function. Our numerical experi-
ments indicate that the approximations converge like O(h) or better for Method 1, and O(h2) for Method
2, whether or not u is a distance function, but that using a distance function usually (but not always – see
Example 3 of Section 5) leads to smaller errors. Engquist, Tornberg, and Tsai [2] also observed better perfor-
mance for their algorithms when u is a distance function.

An alternative to the methods proposed in this paper is to simply use an approximate delta function such as
dL,� or dC,� in a pointwise manner, and this seems to be common practice [1–3,6]. Usually the value of the
smoothing parameter � is set to h or 1.5h or 2h. Tornberg and Engquist [11] showed that for dC,� in one dimen-
sion, this approach leads to a consistent approximation (meaning that the approximation converges to the true
solution as h! 0) for integrals like (1), but only if � is one of a set of discrete values. This is not a serious
restriction in one dimension. However, they also demonstrated the much more serious problem that in more
than one dimension, both dL,� and dC,� generally yield inconsistent approximations. In [10], Tornberg and Eng-
quist studied this problem further, including numerical experiments demonstrating clearly the lack of consis-
tency mentioned above. In [2], Engquist, Tornberg, and Tsai proposed two methods for overcoming this lack
of consistency. Their first method is based on an approximate product formula for multidimensional delta
functions, along with the linear hat approximate delta function dL,�. They proved that this method is at least
first order accurate for integrals like (1), and numerical experiments indicate that it is actually second order
accurate. Their second method, which is first order accurate, is also based on the linear hat delta function.
It allows the smoothing parameter � to vary spatially depending on the local behavior of the level function
u, and is simpler than their algorithm based on the approximate product rule.
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The subject of this paper has also been studied by Smereka [8], who proposed both a first and second order
method for two- and three-dimensional problems. This approach is derived from a technique for solving ellip-
tic problems with discontinuous coefficients. It has the advantage that the support of the resulting approxi-
mate delta function is at most that of a single mesh width.

The rest of the paper is organized as follows. In Section 2, we prove that if u and f satisfy certain regularity
conditions, both Methods 1 and 2 converge to the integral I as h! 0. The results in Section 2 do not provide
any information about rates of convergence. In Section 3, we carry out an analysis of the one-dimensional
versions of the algorithms, this time obtaining rates of convergence. In Section 4, we show that for the greatly
simplified case where u is linear and f has compact support, our one-dimensional rate of convergence results
from Section 3 carry over to the two-dimensional setting. In Section 5 we present the results of some numerical
experiments, borrowing heavily from the examples in Engquist, Tornberg, and Tsai [2], and also from
Smereka [8].

2. Convergence in several dimensions

As mentioned previously, for the case of several dimensions, approximations to the integral I based on
seemingly reasonable pointwise approximations to a delta function may not converge to I as h! 0.

In this section, we prove that using either Method 1 or Method 2 to approximate dðuð~xÞÞ, the approxima-
tion Ih converges to the integral I as h! 0. We do not attempt to prove a rate of convergence in the mul-
tidimensional setting considered in this section. In Sections 3 and 4 we study the rate of convergence for very
much simplified problems.

For this section, our underlying regularity assumption concerning the data f and u is as follows:

Assumption 2. There is a bounded open rectangle X :¼ Pn
i¼1ð�X i;X iÞ containing C such that u 2 C2ðXÞ,

f 2 C1ðXÞ. For each subset S ˝ R, let U S :¼ f~x 2 X : uð~xÞ 2 Sg. With this notational convention, we further
assume that for some R > 0, q > 0,
for r 2 ½�R;R�; ; 6¼ U frg � X;

krukP q for ~x 2 U ½�R;R�:
ð22Þ
Remark 2.1. The purpose of the first condition in (22) is to ensure that the support of the approximate delta
function dh

i ði ¼ 1; 2Þ is contained entirely within the computational domain. Since oX and U[�R,R] are com-
pact and (by the first condition in (22)) disjoint, we are ensured that
dðU ½�R;R�; oXÞ :¼ inffk~y �~xk :~y 2 U ½�R;R�;~x 2 oXg > 0: ð23Þ
The purpose of the second condition in (22) is to guarantee that the formula for dh
i is well defined near C (recall

that i$huki appears in the denominator). In addition, this condition guarantees that each set of the form U[r,s]

with �R 6 r < s 6 R is a so-called oriented manifold with boundary [9], making it possible to apply the diver-
gence theorem to certain integrals that will appear in the proofs of Theorems 2.1 and 2.2.

To specify the set S appearing in (7) that we will use in this section, let Ki :¼ ºXi/hß � 1, and define
S :¼ fk ¼ ðk1; . . . ; knÞ : �Ki
6 ki 6 Ki; i ¼ 1; . . . ; ng: ð24Þ
The proofs of Theorems 2.1 and 2.2 use a certain modified version ~f of the function f. To construct ~f , we start
with the observation that there exists a C1 function l: R ´ [0,1] such that l(r) = 1 for �R/2 6 r 6 R/2 and
l(r) = 0 for jrjP R. Let qð~xÞ ¼ lðuð~xÞÞ. Due to Assumption 2, q 2 C2(Rn), and q has compact support. More
specifically, supp(q) ˝ U[�R,R], and q = 1 on the set U[�R/2,R/2] containing C. Equipped with the function q, we
define ~f ð~xÞ ¼ qð~xÞf ð~xÞ, and observe that ~f 2 C1ðRnÞ, and ~f ð~xÞ ¼ f ð~xÞ for ~x 2 U ½�R=2;R=2�. In addition, ~f has
compact support; in fact suppð~f Þ � U ½�R;R�.

We can finally state our convergence theorem for Method 1.

Theorem 2.1. Suppose that Assumption 2 holds. Let Hh(z) denote an approximation to the Heaviside function

H(z) satisfying Assumption 1. Assume that dh
1ð~xk; uÞ defined by (12) (i.e., Method 1) is used in (7) defining the
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approximation Ih. Finally assume that the set S is defined by (24). Then Ih converges to the integral I in (1) as

h! 0.

Remark 2.2. Although Assumption 1 allows for other possibilities, we have in mind the two versions of Hh(z)
that we have used in our numerical experiments. Specifically, we single out HC,�(z) with � = 1.5h and HL,�(z)
with � = 1.0h. Clearly both of these approximations satisfy the conditions of Assumption 1.

Proof. To keep the notation simple, we will carry out the proof in R2. It will become clear that the proof
remains valid in Rn. Let X = (�X,X) · (�Y,Y), and consistent with (24), let J = ºX/hß � 1, K = ºY/hß � 1.
In R2, the approximation formula (7) becomes
Ih :¼ h2
XJ

j¼�J

XK

k¼�K

fj;kd
h
1ððxj; ykÞ; uÞkrhuj;kk: ð25Þ
Here we are using the abbreviations fj,k = f(xj,yk), uj,k = u(xj,yk), and the set S appearing in (7) and (24) is
{(j,k): � J 6 j 6 J, � K 6 k 6 K}.

Let r :¼ ruk kL1ðXÞ, and define ~X h ¼ ðJ � 1Þh, ~Y h ¼ ðK � 1Þh. For h sufficiently small,
dh
1ððxj; ykÞ; uÞ ¼ 0 for juj;kj > ðaþ rÞh; ð26Þ

U ½�ðaþrÞh;ðaþrÞh� � U ½�R=2;R=2� � U ½�R;R� � ð�~X h; ~X hÞ � ð�~Y h; ~Y hÞ; ð27Þ
for � K 6 k 6 K; ~f j;k ¼ 0 if j ¼ �J ; �ðJ þ 1Þ; ð28Þ
for � J 6 j 6 J ; ~f j;k ¼ 0 if k ¼ �K; �ðK þ 1Þ: ð29Þ
Assertion (26) is readily verified using Assumption 1, and the fact that if ~x and ~y are a pair of points in the
(convex) set X, then kuð~xÞ � uð~yÞk 6 rk~x�~yk. The only portion of the (27) requiring verification is the set
inclusion U ½�R;R� � ð�~X h; ~X hÞ � ð�~Y h; ~Y hÞ, and this is a consequence of (23). Finally, (28) and (29) follow from
(27), along with the fact that ~f j;k ¼ 0 for (xj,yk) 62 U(�R,R).

From (26) and (27), along with the fact that ~f j;k ¼ fj;k for (xj,yk) 2 U[�R/2,R/2], it is clear that as soon as h is

so small that (a + r)h < R/2, we will have dh
1ððxj; ykÞ; uÞ ¼ 0 on the set where ~f j;k differs from fj,k. Thus for h

sufficiently small, we can replace (25) by
Ih :¼ h2
XJ

j¼�J

XK

k¼�K

~f j;kd
h
1ððxj; ykÞ; uÞkrhuj;kk: ð30Þ
Let
ðpj;k; qj;kÞ ¼ ~f j;k
ðDx

0uj;k;D
y
0uj;kÞ

ðDx
0uj;k;D

y
0uj;kÞ

�� �� ; ð31Þ
where
Dx
0uj;k ¼ ðujþ1;k � uj�1;kÞ=2h;

Dy
0uj;k ¼ ðuj;kþ1 � uj;k�1Þ=2h:

ð32Þ
Note that due to our assumption that i$ui P q for~x 2 U ½�R;R�, and the fact that ~f j;k vanishes for juj,kjP R, the
quantity appearing in (31) is bounded and well-defined in spite of the denominator term kðDx

0uj;k;D
y
0uj;kÞk.

Substituting (12) and (31) into (25) we can equivalently write
Ih ¼ h2
XK

k¼�K

XJ

j¼�J

pj;kDx
0Hhðuj;kÞ þ h2

XJ

j¼�J

XK

k¼�K

qj;kDy
0H hðuj;kÞ: ð33Þ
We now sum by parts in (33). Specifically, we sum by parts in j (with k fixed) in the first sum, and sum by parts
in k (with j fixed) in the second sum. Due to (28) and (29), there are no boundary contributions, and the result
is
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Ih ¼ �h2
XK

k¼�K

XJ

j¼�J

H hðuj;kÞDx
0pj;k � h2

XJ

j¼�J

XK

k¼�K

H hðuj;kÞDy
0qj;k: ð34Þ
Let Rj,k(x,y) denote the characteristic function for the rectangle [xj � h/2,xj + h/2) · [yk � h/2,yk + h/2), and
define
Hhðx; yÞ ¼
XJ

j¼�J

XK

k¼�K

Rj;kðx; yÞHhðuj;kÞ; ð35Þ

P hðx; yÞ ¼
XJ

j¼�J

XK

k¼�K

Rj;kðx; yÞDx
0pj;k; ð36Þ

Qhðx; yÞ ¼
XJ

j¼�J

XK

k¼�K

Rj;kðx; yÞDy
0qj;k: ð37Þ
In terms of these quantities, (34) becomes
Ih ¼ �
Z Z

Xh
Hhðx; yÞP hðx; yÞdxdy �

Z Z
Xh
Hhðx; yÞQhðx; yÞdxdy: ð38Þ
Here Xh :¼ [�(J + 1/2)h, (J + 1/2)h) · [�(K + 1/2)h, (K + 1/2)h). Note that Xh ˝ X, and that Xh approximates
the set X in the sense that the characteristic function of Xh converges boundedly a.e. to the characteristic func-
tion of X.

Our immediate goal is to apply the bounded convergence theorem to each of the integrals on the right side
of (38). Clearly,
P hðx; yÞ ! ox
~f ðx; yÞ uxðx; yÞ

kruðx; yÞk

� �
; Qhðx; yÞ ! oy

~f ðx; yÞ uyðx; yÞ
ruðx; yÞk k

� �
ð39Þ
boundedly at each point (x,y) 2 X. Concerning the convergence of Hh, note that for h small enough,
U(�R,R) ˝ Xh; this is clear from (27). It is readily verified that Hhðx; yÞ ! 1 for (x,y) 2 U(0,R), and
Hhðx; yÞ ! 0 for (x,y) 2 U(�R,0), the key ingredients being Assumption 1, along with the fact that u is positive
on the open set U(0,R) and negative on the open set U(�R,0). We can ignore any convergence questions on the
boundary sets U{0}, U{�R}, and U{R} since they all have two-dimensional measure zero, and all of the relevant
quantities remain uniformly bounded as h! 0. With these facts in mind, along with the observation that both
of the limiting quantities in (39) vanish identically for (x,y) 62 U(�R,R), we can finally apply the bounded con-
vergence theorem, yielding
Ih ! �
Z Z

U ð�R;RÞ

Hðuðx; yÞÞr � ~f ðx; yÞ ruðx; yÞ
ruðx; yÞk k

� �
dxdy: ð40Þ
Since u(x,y) < 0 on U(�R,0), the integral on the right side of (40) is equal to
�
Z Z

U ð0;RÞ

r � ~f ðx; yÞ ruðx; yÞ
ruðx; yÞk k

� �
dxdy: ð41Þ
An application of the divergence theorem to this last integral yields
Ih ! �
Z

oU ð0;RÞ

~f ðx; yÞ ruðx; yÞ
ruðx; yÞk k �~nðx; yÞds; ð42Þ
where ~nðx; yÞ denotes the outward unit normal vector to the boundary of the domain U(0,R). Since
oU(0,R) = U{0} [ U{R}, and ~f vanishes on the level set U{R}, the only contribution to the integral appearing
in (42) comes from C = U{0}. Moreover, ~f ¼ f when ~x 2 C. Finally, for ~x 2 C, ~n ¼ �ru= ruk k, and thus
the limiting integral appearing in (42) is equal to

R
C f ds, which completes the proof. h

A similar convergence theorem applies to Method 2.



922 J.D. Towers / Journal of Computational Physics 220 (2007) 915–931
Theorem 2.2. Suppose that Assumption 2 holds, and assume that dh
2ð~xk; uÞ defined by (17) (i.e., Method 2) is used

in (7) defining the approximation Ih, and that the set S is defined by (24). Then Ih converges to the integral I in

(1) as h! 0.

Proof. As in the proof of Theorem 2.1, we carry out the analysis in R2, but only to simplify the notation; how
to generalize to Rn will be clear. The assertions (26)–(29) remain valid here with the exception that the first two
are replaced by
dh
2ððxj; ykÞ; uÞ ¼ 0 for uj;k

�� �� > rh; ð43Þ
U ½�rh;rh� � U ½�R=2;R=2� � U ½�R;R� � ð�~X h; ~X hÞ � ð�~Y h; ~Y hÞ: ð44Þ
Using (17) (Method 2) for the quantity dh((xj,yk);u), the two-dimensional version of (7) becomes
Ih ¼ h2
XJ

j¼�J

XK

k¼�K

fj;k
DhIj;k

krhuj;kk
� Dhuj;kðrhIj;k � rhuj;kÞ

krhuj;kk3

" #
: ð45Þ
As in the proof of Theorem 2.1, for h sufficiently small, we can replace fj,k by ~fj;k. With this substitution, and
after breaking (45) into two separate sums, we get
Ih ¼ h2
XJ

j¼�J

XK

k¼�K

~f j;kD
hIj;k

krhuj;kk
� h2

XJ

j¼�J

XK

k¼�K

~f j;kD
huj;kðrhIj;k � rhuj;kÞ
krhuj;kk3

¼: Sh
1 � Sh

2: ð46Þ
We start by analyzing the sum Sh
1, which we can write as
Sh
1 ¼

XJ

j¼�J

XK

k¼�K

~f j;k

krhuj;kk
Dx
þDx
�Ij;k þ Dy

þDy
�I j;k

� �
: ð47Þ
Here we are using the abbreviations
Dx
þIj;k ¼ ðIjþ1;k � Ij;kÞ=h; Dx

�Ij;k ¼ ðIj;k � Ij�1;kÞ=h;

Dy
þIj;k ¼ ðIj;kþ1 � Ij;kÞ=h; Dy

�Ij;k ¼ ðIj;k � Ij;k�1Þ=h:
ð48Þ
As in the proof of Theorem 2.1, we can sum by parts without introducing any boundary contributions:
Sh
1 ¼ �

XJ

j¼�J

XK

k¼�K

Dx
þ

~f j;k

rhuj;k

�� ��
 !

Dx
þIj;k �

XJ

j¼�J

XK

k¼�K

Dy
þ

~f j;k

krhuj;kk

 !
Dy
þIj;k: ð49Þ
An application of the bounded convergence theorem yields Sh
1 ! S1 where
S1 :¼ �
Z Z

X
r

~f
kruk

 !
� rIðuÞdxdy: ð50Þ
Another application of the bounded convergence theorem gives Sh
2 ! S2 where
S2 :¼
Z Z

X

~f Du rIðuÞ � ruð Þ
kruk3

dxdy: ð51Þ
Thanks to the factor ~f , the integrands in (50) and (51) vanish identically if (x,y) 62 U(�R,R), and $I(u) = 0 on
the set U(�R,0). Thus Ih ! S1 � S2, where
S1 � S2 ¼ �
Z Z

U ð0;RÞ

r
~f
kruk

 !
� rIðuÞ þ

~f Du rIðuÞ � ruð Þ
kruk3

 !
dxdy: ð52Þ
Since u > 0 on the set U(0,R), we can replace $I(u) by $u. With this observation, the integrand in (52) simplifies
to
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r
~f
kruk

 !
� ruþ

~f Du
kruk ¼ r �

~fru
kruk

 !
: ð53Þ
The rest of the proof consists of an application of the divergence theorem, exactly as in the proof of Theorem
2.1. h

Remark 2.3. The smoothness conditions imposed by Assumption 2 can probably be weakened somewhat. In
several of our numerical examples, it appears that we have convergence of the approximations using both
methods even though u is only piecewise C2, or even piecewise C1 in one case.

Remark 2.4. From the proof of Theorem 2.1, it is clear that we could take S to be the much smaller set
fk 2 Zn : juð~xkÞj 6 ðaþ rÞhg, thus reducing the amount of computation significantly. Similarly, from the
proof of Theorem 2.2 we could take S to be fk 2 Zn : juð~xkÞj 6 rhg.
3. Analysis of the one-dimensional algorithms

Although our ultimate interest is in the multidimensional versions of the algorithms, some insight into the
rate of convergence can be gained by analyzing their one-dimensional versions. In the one-dimensional case,
computing the integral (1) is equivalent to an interpolation problem, making the analysis more manageable
than the multidimensional case. In the case where uðxÞ ¼ x� �x (a one-dimensional signed distance function),
Beyer and Leveque [1] and Tornberg and Engquist [10] showed that the error in approximating the integral (1)
will be O(hq) if the following moment condition is satisfied for any �x 2 R:
h
X
j2Z

d�ðxj � �xÞðxj � �xÞr ¼
1; r ¼ 0;

0; 1 6 r < q:

�
ð54Þ
Here d�(x) denotes an approximate delta function with compact support in [��,�] such that � = O(h).
It is straightforward to extend the moment condition (54) to the situation where u(x) is not necessarily a

signed distance function. Suppose that u is strictly monotone, and that uð�xÞ ¼ 0. Let dh(xj;u) denote a one-
dimensional approximation to the delta function. In order to approximate the integral (1) to order q using
the one-dimensional version of (7), we must have
h
X
j2Z

f ðxjÞdhðxj; uÞ D0uj

�� �� ¼ f ð�xÞ þOðhqÞ; ð55Þ
where D0uj = (u(xj+1) � u(xj�1))/2h. Substituting the Taylor series
f ðxjÞ ¼ f ð�xÞ þ
Xq�1

r¼1

f ðrÞð�xÞ
r!
ðxj � �xÞr þ f ðqÞðnÞ

q!
ðxj � �xÞq ð56Þ
into (55) yields
h
X
j2Z
ðxj � �xÞrdhðxj; uÞjD0ujj ¼

1þOðhqÞ; r ¼ 0;

OðhqÞ; 1 6 r < q;

�
ð57Þ
as sufficient moment conditions for qth order accuracy when u is not necessarily a distance function. In deriv-
ing (57) we assume that dh(xj;u) = O(1/h) and that dh(xj;u) = 0 if xj � �x

�� �� > OðhÞ. These conditions are easily
checked for both of the proposed discretizations dh

1 and dh
2 under the conditions of Theorem 3.1.

Theorem 3.1. Assume that f 2 C1(R), u 2 C1(R), and that the level function satisfies uð�xÞ ¼ 0, iu 0(x)i P q > 0 for

all x 2 R. Then the one-dimensional version of the algorithm that results from using Method 1, with Hh satisfying

Assumption 1, satisfies the moment condition (57) with q = 1, implying at least O(h) accuracy as h! 0. If we

additionally assume that f 2 C2(R), u 2 C3(R), then the one-dimensional version of the algorithm that results from

using Method 2 satisfies (57) with q = 2, implying at least O(h2) accuracy.
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Proof. Assume that u 0(x) > 0; the proof when u 0(x) < 0 is similar. With this assumption, the one-dimensional
version of the approximate delta function that results from using (12) (i.e., Method 1) is just
dh
1ðxj; uÞ ¼ Hhðuðxjþ1ÞÞ � Hhðuðxj�1ÞÞ

uðxjþ1Þ � uðxj�1Þ
: ð58Þ
Plugging this into the left side of (57) with r = 0 gives
1

2

X
j2Z
ðH hðujþ1Þ � Hhðuj�1ÞÞ: ð59Þ
Here we are using the abbreviation uj = u(xj). Thanks to Assumption 1, along with the assumption that
iu 0i P q, there is an index J such that Hh(uj) = 0 for j 6 �J, and Hh(uj) = 1 for j P J. The telescoping series
(59) is thus equal to one. This verifies (57) with q = 1, and which proves the portion of the theorem concerning
Method 1.

To prove the assertion about Method 2, we must verify (57) with q = 2. We start by observing that the one-
dimensional version of the delta function that results from using (17) is
dh
2ðxj; uÞ ¼ D0uj � DþD�Ij � D0I j � DþD�uj

D0uj

� �3
: ð60Þ
Here Ij = I(uj), and we are using the notation
Dþuj ¼
ujþ1 � uj

h
; D�uj ¼

uj � uj�1

h
: ð61Þ
In what follows, it will be convenient to work with the quantity ch
2ðxj; uÞ :¼ dh

2ðxj; uÞD0uj. Inspection of (60)
reveals that if �x 2 ½xj0

; xj0þ1Þ, then only ch
2ðxj0

; uÞ and ch
2ðxj0þ1; uÞ are non-zero. It is easy to check that

ch
2ðxj; uÞ ¼ Oð1=hÞ. In addition, using the assumption that u 2 C3(R), it is readily verified that (D0uj)

2 =
(D+uj)(D�uj) + O(h2). These two observations yield the approximation
ch
2ðxj; uÞ ¼ D0uj � DþD�Ij � D0I j � DþD�uj

Dþuj

� �
D�uj

� � þOðhÞ: ð62Þ
The first term on the right side of (62) is equal to D+(D�Ij/D�uj), so we have
ch
2ðxj; uÞ ¼ ~ch

2ðxj; uÞ þOðhÞ; ~ch
2ðxj; uÞ :¼ Dþ

D�I j

D�uj

� �
: ð63Þ
To verify the r = 0 moment condition, we start by recalling that ch
2ðxj; uÞ vanishes for all but at most two

points. Thus multiplying the first equation in (63) by h and then summing over j gives
h
X
j2Z

ch
2ðxj; uÞ ¼ h

X
j2Z

~ch
2ðxj; uÞ þOðh2Þ: ð64Þ
The sum on the right side of (64) is equal to h
P

j2ZDþðD�Ij=D�ujÞ which is telescoping. Recalling the defini-
tion of I(Æ), it is clear that this sum is equal to 1, which proves the r = 0 moment condition.

For the r = 1 moment condition, assume that �x 2 ½xj0
; xj0þ1Þ. Like ch

2ðxj; uÞ, ~ch
2ðxj; uÞ is only non-zero at the

two grid points xj0
and xj0þ1. Thus, for the r = 1 moment condition, it suffices to show that
S :¼ h yj0
~ch

2ðxj0
; uÞ þ yj0þ1~c

h
2ðxj0þ1; uÞ

	 

¼ Oðh2Þ: ð65Þ
Here we are using the abbreviation yj ¼ xj � �x. From the definitions, it is not hard to check that
~ch
2ðxj0

; uÞ ¼ uj0þ1

uj0þ1 � uj0

; ~ch
2ðxj0þ1; uÞ ¼ �uj0

uj0þ1 � uj0

; ð66Þ
and thus
S ¼ h
uj0þ1 � uj0

yj0
uj0þ1 � yj0þ1uj0

	 

: ð67Þ
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We next approximate uj0
and uj0þ1 using Taylor polynomials:
uj0
¼ uð�xÞ þ u0ð�xÞyj0

þOðh2Þ; uj0þ1 ¼ uð�xÞ þ u0ð�xÞyj0þ1 þOðh2Þ: ð68Þ
Here we have used the fact that xj0
� �x ¼ yj0

¼ OðhÞ, and similarly xj0þ1 � �x ¼ yj0þ1 ¼ OðhÞ. Plugging (68) into
(67), we get some cancellation, leaving
S ¼ h
uj0þ1 � uj0

ðyj0
Oðh2Þ � yj0þ1Oðh2ÞÞ: ð69Þ
Recalling that yj0
and yj0þ1 are O(h), and that ju 0(x)jP q > 0, we have S = O(h3), and the proof is complete. h
4. Analysis in two dimensions for linear u

In Section 2 we demonstrated that our two proposed methods give approximations Ih that converge to the
integral I as h! 0, and these results were valid in a fairly general multidimensional setting. These results help
to justify the proposed methods, but do not address the rate of convergence. The numerical experiments
described in Section 5 seem to indicate that these multidimensional approximations are at least O(h) for
Method 1 and O(h2) for Method 2, in agreement with the results specific to the one-dimensional setting of
Section 3. We do not presently have a proof of these stronger modes of convergence for the multidimensional
setup considered in Section 2. In this section, we take a modest step toward bridging this analytical gap. Spe-
cifically, we focus on R2, and assume that the level function u is linear:
uðx; yÞ ¼ Axþ By; A2 þ B2 6¼ 0: ð70Þ

Thus the zero level set C is the straight line through the origin defined by Ax + By = 0. We assume that f has
compact support, so that the integral I appearing in (1) is finite.

Admittedly, this setup is greatly simplified, but the proofs of Theorems 4.1 and 4.2 below provide some
insight into the mechanism by which the accuracy properties established in Section 3 for the one-dimensional
setting are transferred to R2.

Theorem 4.1. Suppose that u has the form given by (70), that f 2 C1(R2), and that f is compactly supported. If Hh

satisfies Assumption 1, then Method 1 gives an O(h) approximation to the integral I appearing in (1).

Proof. Assume for now that A 6¼ 0, B 6¼ 0. From our assumptions about u, the integral I can be written in
either of the equivalent forms
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2=B2

q Z 1

�1
f ðx;�Ax=BÞdx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2=A2

q Z 1

�1
f ð�By=A; yÞdy: ð71Þ
On the other hand, with u(x,y) = Ax + By, Method 1 yields the approximation
Ih ¼Ah2
X
j2Z

X
k2Z

fj;kDx
0Hhðuj;kÞ þBh2

X
j2Z

X
k2Z

fj;kDy
0Hhðuj;kÞ; ð72Þ
where A ¼ A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, B ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
.

By our one-dimensional accuracy result (Theorem 3.1) for Method 1,
h
X
j2Z

fj;kDx
0H hðuj;kÞ ¼ signðAÞf ð�Byk=A; ykÞ þOðhÞ: ð73Þ
Here (�Byk/A,yk) is the point where the line C intersects the horizontal mesh line y = yk. By our assumptions
about f, the O(h) bound in (73) is uniform in k, and so multiplying (73) by Ah and summing over k yields
Ah2
X
j2Z

X
k2Z

fj;kDx
0H hðuj;kÞ ¼ jAjh

X
k2Z

f ð�Byk=A; ykÞ þOðhÞ: ð74Þ
Since f has compact support, jAjh
P

k2Zf ð�Byk=A; ykÞ is a trapezoidal rule approximation (with error O(h2)) to

the integral jAj
R1
�1 f ð�By=A; yÞdy. Combining this observation with the identity Aj j ¼A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2=A2

q
and
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then referring to the second integral in (71), we see that the first sum on the right side of (72) is equal to
A2IþOðhÞ.

Similarly
Bh2
X
j2Z

X
k2Z

fj;kDy
0Hhðuj;kÞ ¼ jBjh

X
j2Z

f ðxj;�Axj=BÞ þOðhÞ; ð75Þ
where (xj,�Axj/B) is the point where C intersects the vertical line x = xj. This time, we recognize
jBjh

P
j2Zf ðxj;�Axj=BÞ as a trapezoidal rule approximation to the integral jBj

R1
�1 f ðx;�Ax=BÞdx. We use

the identity jBj ¼ B2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2=B2

q
, and then refer to the first integral in (71) to conclude that the second

sum on the right side of (72) is equal to B2IþOðhÞ. Combining this with the results of the previous para-
graph, and finally noting that A2 þB2 ¼ 1, the proof is complete under that assumption that A 6¼ 0,
B 6¼ 0. To complete the proof, take the case where B = 0; the case where A = 0 is similar. In this situation,
the second sum in (72) vanishes and examination of the argument above reveals that the first sum in (72) is
an O(h) approximation to the second integral in (71). h

We have a similar theorem for Method 2.

Theorem 4.2. Suppose that u has the form given by (70), that f 2 C2(R), and that f is compactly supported. Then

Method 2 gives an O(h2) approximation to the integral I appearing in (1).

Proof. With our assumptions about u, Method 2 simplifies to
Ih ¼ h2
X
j2Z

X
k2Z

fj;kDx
þDx
�Iðuj;kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p þ h2

X
j2Z

X
k2Z

fj;kDy
þDy
�Iðuj;kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p : ð76Þ
As in the proof of Theorem 4.2, we first address the case where A 6¼ 0, B 6¼ 0. Let us focus for now on the first
sum on the right side of (76). Our one-dimensional accuracy results (Theorem 3.1) for Method 2 imply that
h
X
j2Z

fj;k
Dx
þDx
�Iðuj;kÞ
jAj ¼ f ð�Byk=A; ykÞ þOðh2Þ: ð77Þ
Multiplying both sides of this equation by jAjh, then dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, and finally summing over k 2 Z,

we find that the first sum on the right side of (76) is equal to
jAjh
X
k2Z

f ð�Byk=A; ykÞ þOðh2Þ; A ¼ A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
: ð78Þ
Similarly, we can apply our one-dimensional accuracy results to conclude that the second sum on the right side
of (76) is equal to
jBjh
X
j2Z

f ðxj;�Axj=BÞ þOðh2Þ; B ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
: ð79Þ
Recalling again that the error in the trapezoidal rule is O(h2), the rest of the proof is virtually identical to the
proof of Theorem 4.1. h
5. Numerical examples

In this section, we present the results of a number of numerical examples. When using Method 1, for the
approximate Heaviside function Hh we always use HC,� with � = 1.5h or HL,� with � = 1.0h.

To study the rate of convergence via mesh refinement, we average over small random grid shifts, following
[2,8]. If the error E(h) of our approximations was of the form E(h) = C0hq + C1hq+1 + � � � for some constants
C0,C1, . . . , we could simply compute the error based on one calculation at each of the selected levels of mesh
refinement. However, we only have that the quantity E(h)/hq is bounded as h! 0. This makes it necessary to
average over a number of small random grid shifts in order to observe the rate of convergence. The number of
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grid shifts required depends on the problem and the method, and is determined in any particular case by trial
and error. We have recorded the number of grid shifts used in each of the experiments that follow by placing
them in parentheses in the headings of the tables.

Finally, all errors appearing in the tables below are relative errors unless the true solution is zero, in which
case absolute errors are displayed.

Example 1. Our first example is taken from [2]. Tables 1 and 2 show the results when C is a capsule shaped
curve of the type appearing in Figure 1 of [2]. The function f is identically equal to one for this example, so the
integral I measures the length of C. This test case was designed by Tornberg and Engquist [11], specifically to
demonstrate the O(1) errors that occur by simply using the cosine approximate delta function dC,� in a
pointwise manner. Due to the 45� inclination of the capsule, there is very little error cancellation, making it
difficult for an inconsistent method to give good results. The results from using Method 1 are shown in Table
1. Both variants of Method 1 seem to give second order rates of convergence. When using a signed distance
function for the level function u, HL,� and HC,� give very similar results, but when using a non-distance
function, HL,� is somewhat more accurate than HC,�. From Table 2, it appears that Method 2 gives also O(h2)
convergence for this example. In Table 2 we also show the result of using the pointwise approximate delta
function dC,� with � = 1.5h, and u a signed distance function. As expected, the approximations using dC,� do
not converge as h! 0.

Example 2. In the example above, Method 1 gave second order accuracy. However, Method 1 is generally
only first order accurate. To demonstrate this, let
Table
Examp

h

.06

.03

.015

.0075

.00375

Table
Examp

h

.06

.03

.015

.0075

.00375
n ¼ ðx� yÞ=
ffiffiffi
2
p

; g ¼ ðxþ yÞ=
ffiffiffi
2
p

:

We take u(x,y) = g, and
f ðx; yÞ ¼ g cos2ðnÞ cos2ðgÞ if jnj < p=2 and jgj < p=2;

0 otherwise:

�
ð80Þ
It is clear that I ¼ 0 for this example. Moreover, this provides an example of the situation analyzed in Section
4. The results are shown in Table 3. Both variants of Method 1 show approximately O(h) accuracy, while for
this particular example Method 2 seems to give O(h3) accuracy.
1
le 1 – Method 1

Using HC,� (8) Using HL,� (32)

Dist. uð~xÞ Non-dist. uð~xÞ Dist. uð~xÞ Non-dist. uð~xÞ
Error Rate Error Rate Error Rate Error Rate

3.40e � 3 1.94e � 1 3.37e � 3 1.35e � 1
8.25e � 4 2.0 4.20e � 2 2.2 8.17e � 4 2.0 7.57e � 3 4.2
2.05e � 4 2.0 2.46e � 3 4.1 2.06e � 4 2.0 1.44e � 3 2.4
5.13e � 5 2.0 5.84e � 4 2.1 5.20e � 5 2.0 3.52e � 4 2.0
1.29e � 5 2.0 1.45e � 4 2.0 1.30e � 5 2.0 8.73e � 5 2.0

2
le 1 – Method 2 and pointwise delta function dC,�

Method 2 (8) Using dC,� (512)

Dist. uð~xÞ Non-dist. uð~xÞ
Error Rate Error Rate Error Rate

1.69e � 3 2.81e � 2 3.48e � 3
4.00e � 4 2.1 6.81e � 3 2.0 3.06e � 3 0.2
1.01e � 4 2.0 1.70e � 3 2.0 3.06e � 3 0.0
2.53e � 5 2.0 4.24e � 4 2.0 3.09e � 3 0.0
6.38e � 6 2.0 1.06e � 4 2.0 3.15e � 3 0.0



Table 3
Example 2

h Method 1 (128) Method 2 (128)

Using HC,� Using HL,�

Error Rate Error Rate Error Rate

.06 4.20e � 5 6.42e � 4 7.33e � 6

.03 2.12e � 5 1.0 2.96e � 4 1.1 9.03e � 7 3.0

.015 9.91e � 6 1.1 1.59e � 4 0.9 1.17e � 7 2.9

.0075 4.98e � 6 1.0 8.20e � 5 1.0 1.45e � 8 3.0
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Example 3. In this example
Table
Examp

h

.08

.04

.02

.01

.005

Table
Examp

h

.08

.04

.02

.01

.005
I ¼
Z

C

1

2
ðr � xÞds ¼ pr2; ð81Þ
where C is a circle of radius r ¼ 0:35
ffiffiffi
2
p

centered at the origin. Table 4 shows the results when u is a signed
distance function. Both methods seem to give O(h2) convergence for this example. However, Method 2 is much
more accurate than Method 1 over the range of h tested here. Table 4 also shows the result of using the point-
wise approximate delta function dC,� with � = 1.5h. As the mesh is refined, it appears that the rate of conver-
gence is slowing, indicating that perhaps these approximations do not converge to the correct solution.

Table 5 shows the results when for this same example when u is not a signed distance function. This time,
Method 2 seems to be converging like O(h2), while Method 1 is converging at a rate somewhere between O(h)
and O(h2). For the range of h used in this experiment, Method 1 is more accurate. This example is a little
unusual in that, at least for Method 1, the approximations are more accurate when using a level function u

that is not a signed distance function. Finally, we again see the decreasing rate of convergence when using the
pointwise approximate delta function dC,�. For the dC,� approximation, we used � = 1.5h.

Example 4. In the next example, we let C be the ellipse x2/9 + y2/4 = 1, and f(x,y) = $ Æ ($u(x,y)/i$u(x,y)i)
where u(x,y) = x2/9 + y2/4 � 1, so that
4
le 3 – u(x,y) is a signed distance function

Method 1 (32) Method 2 (32) Using dC,� (64)

Using HC,� Using HL,�

Error Rate Error Rate Error Rate Error Rate

7.67e � 3 4.42e � 3 1.55e � 6 4.41e � 3
1.92e � 3 2.0 1.11e � 3 2.0 4.00e � 7 1.9 1.05e � 3 2.1
4.80e � 4 2.0 2.74e � 4 2.0 1.03e � 7 2.0 3.67e � 4 1.5
1.20e � 4 2.0 7.05e � 5 2.0 2.58e � 7 2.0 1.92e � 4 0.9
3.00e � 5 2.0 1.73e � 5 2.0 6.40e � 7 2.0 1.21e � 4 0.7

5
le 3 – u(x,y) is not a signed distance function

Method 1 (1024) Method 2 (32) Using dC,� (64)

Using HC,� Using HL,�

Error Rate Error Rate Error Rate Error Rate

1.42e � 4 3.29e � 4 1.31e � 2 2.40e � 3
3.00e � 5 2.2 1.04e � 4 1.7 3.26e � 3 2.0 1.24e � 3 1.0
4.34e � 6 2.8 3.46e � 5 1.6 8.17e � 4 2.0 4.26e � 4 1.5
1.26e � 6 1.8 1.20e � 5 1.5 2.04e � 4 2.0 2.03e � 4 1.1
3.61e � 7 1.8 4.07e � 6 1.6 5.10e � 5 2.0 1.31e � 4 0.6
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h

.32

.16

.08

.04

.02

Table
Examp

h

.06

.03

.015

.0075

.00375
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I ¼
Z

C
jðx; yÞds; ð82Þ
where f(x,y) = j(x,y) is the curvature of C. By parameterizing the curve, we can approximate this integral by
any standard quadrature technique:
I ¼
Z 2p

0

1

5 sin2 t þ 4
dt � 6:28318530733266: ð83Þ
To mitigate possible error cancellation due to symmetry, we rotated the mesh by 45�. Although we could com-
pute j(xj,yk) exactly, we used centered difference approximations. This was an attempt to simulate how the
method would be used in applications, where j would only be defined at the mesh points. Note that for this
example, u is not a signed distance function. The results are shown in Table 6. From Table 6, it is clear that the
convergence for Method 2 is O(h2), while for Method 1 the convergence is between O(h) and O(h2).

Example 5. In this example, C is a square whose sides have length
ffiffiffi
2
p

, and are oriented at a 45� angle to the
coordinate axes. f(x,y) ” 1, so that

R
C ds is equal to the perimeter of the square. This is the example appearing

in Table 1 of Smereka’s paper [8]. We use the signed distance function u specified in [8]. This example is of
interest because the level function u is only piecewise C1. Also like the capsule example, this is another problem
where using a pointwise defined delta function like dC,� or dL,� is known to fail to converge to the true solution.
The results are shown in Table 7. We have convergence at a rate of O(h) in all cases, no doubt due to the
reduced smoothness of u. For this example, Method 2 is more accurate than Method 1.

Example 6. Table 8 shows the results from an experiment where C is the capsule shaped surface appearing in
Fig. 12 of [2]. To be more specific, C is a cylinder that has hemispheres attached as caps at either end. It is
rotated and shifted in space so that its axis is along the vector (1,1,1). This is designed to minimize cancella-
tion of errors. In this example, we took f ” 1, so the integral (1) simply gives the area of C. For Method 1, we
used HC,�. It appears that both methods have second order accuracy for this example, and again this is inde-
pendent of whether u is a distance function.
6
le 4

Method 1 (128) Method 2 (32)

Using HC,� Using HL,�

Error Rate Error Rate Error Rate

4.57e � 3 4.04e � 3 7.78e � 3
1.03e � 3 2.1 1.00e � 3 2.0 1.94e � 3 2.0
4.17e � 4 1.3 3.41e � 4 1.6 4.83e � 4 2.0
9.62e � 5 2.1 9.70e � 5 1.8 1.21e � 4 2.0
3.74e � 5 1.4 3.14e � 5 1.6 3.02e � 5 2.0

7
le 5

Method 1 (16) Method 2 (128)

Using HC,� Using HL,�

Error Rate Error Rate Error Rate

2.32e � 2 2.25e � 2 5.01e � 3
1.13e � 2 1.0 1.13e � 2 1.0 2.92e � 3 0.8
5.81e � 3 1.0 5.78e � 3 1.0 1.51e � 3 1.0
2.92e � 3 1.0 2.89e � 3 1.0 7.24e � 4 1.1
1.43e � 3 1.0 1.43e � 3 1.0 3.73e � 4 1.0



Table 8
Example 6

h Method 1 (1) Method 2 (8)

Dist. uð~xÞ Non-dist. uð~xÞ Dist. uð~xÞ Non-dist. uð~xÞ
Error Rate Error Rate Error Rate Error Rate

.075 7.16e � 3 8.23e � 2 8.69e � 3 6.48e � 2

.05 2.98e � 3 2.2 6.35e � 2 0.6 3.52e � 3 2.2 2.85e � 2 2.0

.0375 1.64e � 3 2.1 3.85e � 2 1.7 1.94e � 3 2.1 1.60e � 2 2.0

.03 1.05e � 3 2.0 2.22e � 2 2.5 1.23e � 3 2.0 1.02e � 2 2.0

.025 7.16e � 4 2.1 1.44e � 2 2.4 8.55e � 4 2.0 7.09e � 3 2.0

.02 4.62e � 4 2.0 8.82e � 3 2.2 5.41e � 4 2.0 4.54e � 3 2.0
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Example 7. In this example, C is the same capsule-shaped surface as in the previous example. Following [2],
we took
Table
Examp

h

.075

.05

.0375

.03

.025

.02

Table
Examp

h

.2

.1

.05

.025
f ðx; y; zÞ ¼ curl F � nC; F ¼ ðx2; y2; z2Þ; ð84Þ

where nC denotes the unit normal vector to the surface C. By Stokes’ theorem, the integral (1) evaluates to zero
with this choice of f. Table 9 shows the results of this experiment. It appears that both methods are converging
at a rate of O(h2).

Example 8. Table 10 shows the results of using both methods to compute the surface integral
I ¼
Z

C
ð4� 3x2 þ 2y2 � z2ÞdA; ð85Þ
where C is the sphere x2 + y2 + z2 = 1. For the level function, we used u(x,y,z) = x2 + y2 + z2 � 1, which is not
a signed distance function. This is the example shown in Table 5 of Smereka’s paper [8]. The rate of conver-
gence appears to be O(h2) for each method.
9
le 7

Method 1 (1) Method 2 (8)

Dist. uð~xÞ Non-dist. uð~xÞ Dist. uð~xÞ Non-dist. uð~xÞ
Error Rate Error Rate Error Rate Error Rate

2.34e � 3 3.24e � 3 2.47e � 4 1.59e � 2
1.07e � 3 1.9 1.62e � 3 1.7 4.56e � 4 �1.5 6.87e � 3 2.1
6.16e � 4 1.9 9.59e � 4 1.8 2.99e � 4 1.5 3.83e � 3 2.0
3.97e � 4 2.0 6.29e � 4 1.9 2.13e � 4 1.5 2.43e � 3 2.0
2.71e � 4 2.1 4.35e � 4 2.0 1.46e � 4 2.1 1.71e � 3 1.9
1.76e � 4 1.9 2.80e � 4 2.0 9.63e � 5 1.9 1.09e � 3 2.0

10
le 8

Method 1 (64) Method 2 (64)

Using HC,� Using HL,�

Error Rate Error Rate Error Rate

2.93e � 2 2.06e � 2 3.69e � 2
3.80e � 3 2.9 3.60e � 3 2.5 8.30e � 3 2.2
9.57e � 4 2.0 8.25e � 4 2.1 2.08e � 3 2.0
2.38e � 4 2.0 2.26e � 4 1.9 5.19e � 4 2.0
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